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Extreme exoplanetary systems: new regimes of
planetary physics and star-planet interactions

Introduction:

*The detection and prevalence of exoplanetary systems
*Planet systems unlike the solar system

*Planetary atmospheres unlike
the solar system
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The Extrasolar Planet Zoo
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’ ‘ ‘ SATURN

JUPITER

(2016)
B Newly validated Kepler planets

I Previously verified planets




The Extrasolar Planet Zoo

Hot Jupiter Super-Earth

WASP-18Db, solar-type host GJ 832c¢, red dwarf host

M ~10M,R~L.1R, Msin(i) ~5.2 Mg, R~ 1.7 R
a~0.02 AU a~0.16 AU

T4~ 2400 - 3100 K Ty~ 230-280K

(Hellier et al. 2009) (Wittenmyer et al. 2014)



Extreme exoplanetary systems: new regimes of
planetary physics and star-planet interactions
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*Planet systems unlike the solar system

*Planetary atmospheres unlike
the solar system

«




EXOPLANET ATMOSPHERES

Narrow-band/spectroscopic transit analysis can
probe absorption by specific atmospheric constituents

Occultation
Depth =
(Rp / R.)?




EXOPLANET ATMOSPHERES

*Narrow-band/spectroscopic transit analysis can
probe absorption by specific atmospheric constituents

Occultation

tmosphere Depth =
(Rp(A) / R.)?

Transit Spectroscopy:
in-transit vs. out-of-transit

Composition
*Temperature structure
*Velocity flows
*Mass-loss rates



Transit Spectroscopy of Short-period Planets

*EUV heating driving mass-loss from short-period planets

*Most spectacular example has been on the short-
period Neptune-mass planet GJ 436b
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Hydrogen detected in the upper

atmosphere of GJ436b (Kulow et al. 2014;
Ehrenreich et al. 2015; Bourrier et al. 2016)

Transit depth ~ 50% (!)
(but no metal outflow — Loyd et al. 2017...or maybe there is...Lavie et al. 2017)



Slide credits Joe Llama - Lowell Obs

NUYV Transit Spectra of WASP-12b: Early Ingress
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Fossati et al. (2010); Vidotto et al. (2010)



Slide credits Joe Llama - Lowell Obs

NUYV Transit Spectra of WASP-12b: Early Ingress

Fossati et al. (2010); Vidotto et al. (2010)
Llama et al. (2011); Haswell et al. (2012)
Nichols et al. (2015)
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Slide credits Joe Llama - Lowell Obs

Interaction between stellar Interaction strength depends
wind and planetary magnetic on relative velocity and
field may cause compression. coronal/wind density and

(Vidotto et al. 2010, 2011) temperature



- Llama et al. (2011), Vidotto et al. (2010):

Slide credits Joe Llama - Lowell Obs

NUV Transit Spectra of WASP-12b: E Ingress

- Potential detection of a magnetic field
around WASP-12b.

- Magnetosphere protects the
atmosphere to ~5 Rp.

- Bp ~ 24 Gauss
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Not the only interpretation:
 Hydrodynamic mass-loss may support an upstream shock (Lai et al. 2010)

» Accretion stream onto the star ahead of the motion (Bisikalo et al. 2013)

* Plasma torus from satellites (Ben-Jaffel & Ballester 2014; Kislyakova et al. 2016)

« CLOUDY modeling finds compressed stellar winds produce insufficient optical
depth, arguing for the planetary mass-loss explanation (Turner et al. 2016)



Extreme Exoplanet Atmospheres: challenges

‘Rarely get the same transit result twice: time-variability
In the star(?), planetary mass-loss rate (?), or apples-vs-
oranges observations and data reduction algorithms

«Sample size of mass-loss measurements ~5, early-
Ingress observations ~1

*Stellar baseline for transit
measurements

Self-consistent modeling framework
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COLORADO
ULTRAVIOLET
TRANSIT

EXPERIMENT

Survey of ~12-24 short-period
transiting planets around
nearby stars:

1) Atmospheric mass-loss

2) Exoplanet magnetic fields?




CUTE: ANEW APPROACH TO ATMOSPHERIC
MASS-LOSS MEASUREMENTS

2012July 11
: : * Almost all detections of atmospheric
fny o \ ( ] (e (;' - ! mass loss have been carried out in the
et \;;_m/ e T FUV (e.g.Vigal-Madjar+ 2004, 2013,
N Linsky+ 2010, Ben-Jaffel+ 2007, 2013,
‘ Kulow+ 2014, Ehrenrich+ 2015)
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e The NUV has both a more uniform,
mainly photospheric, intensity
distribution AND an overall brighter
background for transit observations.

Llama & Shkolnik 2015, 2016



CUTE: ANEW APPROACH TO ATMOSPHERIC
MASS-LOSS MEASUREMENTS

« Almost all detections of atmospheric
mass loss have been carried out in
the FUV (e.g.Vigal-Madjar+ 2004,

i x 2013, Linsky+ 2010, Ben-Jaffel+

g m-r-l'»-‘d'

1 2007, 2013, Kulow+ 2014, Ehrenrich+

Source: SDO

2015)

» Controversial interpretation due to
low-S/N and uncertain
chromospheric intensity distribution
(e.g., Llama & Shkolnik 2015).

Feb. 9, 2000

e The NUV has both a more uniform,
Krivova of al. 2006 mainly photospheric, intensity
distribution AND an overall brighter
background for transit observations,
~100-500x brighter.



CUTE: ANEW APPROACH TO ATMOSPHERIC
MASS-LOSS MEASUREMENTS

Mg I - 285nm Simulati

Survey of ~12-24 short-period transiting
planets around nearby stars:
1) Atmospheric mass-loss & Variability
-- heavy elements will be entrained
in the rapid H & He outflow, getting
‘pulled’ out of the planet and into the e
circumplanetary envelope: Mg, Fe,
molecules, continuum absorption?
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Survey of ~12-24 short-period
transiting planets around nearby stars:

1) Atmospheric mass-loss
2) Exoplanet Magnetic Fields?

Light curve asymmetry to
distinguish between magnetic
and mass-loss supported bow
shocks

Contemporaneous measure of
stellar B-field enables
calculation of planetary
magnetic field -- potential
to discover and quantify Vidotto et al. 2011
exoplanetary magnetism
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DEDICATED SMALL SPACE MISSIONS:
Astronomy with Cubesats
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30cm
* CUTE: First NASA funded UV/O/IR astronomy cubesat e —————————
* Halosat X-ray cubesat (P. Kaaret, Univ. lowa)
20 cm
* More widely used in Earth observing, education,
and solar physics (e.g. CSSWE, MinXSS — Mason et al. 2017)
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Geometric clear area for a
9cm Cassegrain: A ~ 47 cm?

Geometric clear area for a 20 x
8 cm cassegrain: A, ~ 152 cm?

A; /A; . = 3.2x more collecting area!
(requires robust scattered light control)



CUTE Science Instrument

Fold #2

Detector
Array
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Fold #1 —
Slit -

Grating

See CUTE design overview in Fleming et al. (2017)



CUTE Science Instrument

See CUTE design overview in Fleming et al. (2017)



CUTE Predicted Performance
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CUTE Predicted Performance

HD 209458
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CUTE will achieve >30 detections of transits as low as 0.1% depth for the
brightest targets, and < 1% for all baseline targets with 5+ lightcurves
per target:

» Transit sensitivity to 0.7% depth for median target over 1 transit

» Capable of detecting geometric transit and atmospheric transit



CUTE Example Target Visibility List

WASP-18 b

WASP-14b
WASP-38 b
WASP-33 b
HAT-P-14 b
HAT-P-22 b
KELT-3 b
KELT-7b
KELT-2 Ab
HD149026 b
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CUTE Calibration and Operations at the
Umversnty of Colorado




Student Training at the University of Colorado

ds-on training
e hardware

Suborbital Research Programs:
end-to-end mission experience
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CUTE Status

Proposed Roses D.3 APRA - March 2016

Selected Feb. 2017

Funding Started in July 2017

First Science Team face-to-face meeting:
Oct 2017

Adorable logo creation: Winter 2017-18

Launch Q1/Q2-2020
* 7 Month Baseline mission:
* 12 exoplanetary systems, 6-10 transits each
* 12 — 20 additional systems in 12 month
extended mission




CUTE Science Instrument

CCD DETECTOR FOLD #1 SLIT JAW ASSEMBLY GRATING

FOLD #2

PRIMARY MIRROR

SECONDARY MIRROR

See CUTE design overview in Fleming et al. (2017)



EXOPLANET ATMOSPHERES

*Spectroscopic transit analysis can probe absorption
by specific atmospheric constituents

| Atmospheric Water
Absorptio

Tz

Optical, NIR Transit of
the HD 209458b

Occultation
Depth =
Rp(M) 7 R.)?

(Deming et al. 2013, see also
Burrows et al. 2014, Sing et
al. 2016)

Transit depth
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